

WEHOLITE® STRUCTURAL PROFILE WALL HDPE PIPE

PRODUCT BULLETIN

Typical Applications:

Weholite structural profile wall HDPE pipe is design for a variety of applications such as sanitary and storm sewers, irrigation, hydroelectric, stormwater detention, reline, culverts, odor control and ventilation, rainwater harvesting, wastewater storage, marine installations (intakes and outfalls), geothermal vaults, above and below ground tanks, pump stations and manholes.

Manufacturing Standard:

ASTM F894 - Standard Specification for Polyethylene (PE) Large Diameter Profile Wall Sewer and Drain Pipe. Weholite is certified by 3rd party auditors¹ to confirm that the requirements of ASTM F894 are met.

Sizes and Available Lengths:

Weholite is available in diameters from 18 in (460 mm) to 132 in (3355 mm) inches. For sizes \leq 96" NPS the standard laying length are 16.5 ft/5.03 m, 25 ft/7.62 m and 50 ft/15.24 m. For sizes > 96" NPS the standard laying length are 20 ft/6.09 m and 40 ft/12.19 m.

Pressure Ratings:

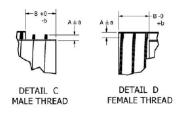
Weholite is designed for standard working pressure up to 7.5 psi /0.5 bar. With profile wall design modifications continuous pressures up to 29 psi / 2 bar can be accommodated.

¹ Le Bureau de normalisation du Québec (BNQ) for Huntsville plant, NSF International for Huntsville and Saskatoon plant.

Typical Material Properties1:

Manufactured from a high-density polyethylene pressure grade material which meets or exceeds the minimum cell classification requirements of 334433C for PE plastic compound as specified in ASTM F894 when classified in accordance with ASTM D3350.

Cell class per ASTM D3350	Density (g/cm³)	Melt Index (g/10 minutes)	Flexural Modulus (psi)	Tensile Strength at Yield (psi)	Slow Crack Resistance, PENT (hours)	HDB (psi)
334433C (minimum per ASTM F894)	>0.940- 0.947	<0.4-0.15	80,000 to <110,000	3000 to <3500	unspecified	1250
345464C (PE3608)	>0.940- 0.947	<0.15	110,000 to <160,000	3000 to <3500	>100	1600
445574C (PE4710)	>0.947- 0.955	<0.15	110,000 to <160,000	3500 to <4000	>500	1600


Joining Methods:

Extrusion welding joint (watertight), Threaded joints (sand and silt tight).

Surge Pressure for continuous pressure applications:

Infra Pipe Solution deem the resistance to surge pressures of Weholite pipe for continuous pressure applications (i.e. hydropower) just as the resistance to polyethylene solid wall pressure pipe...i.e occasional surge pressure may induce pressure surges of 2 x the working pressure rating of the pipe, and recurring surge may induce pressure surges of $1.5 \, x$ the working pressure rating of the pipe . The math for determination of the surge pressure associated with flow of water in Weholite is the same as for the solid wall polyethylene pressure pipe. Please refer to PPI Handbook, Chapter 6.

Temperature Range:

The maximum allowable temperature of the pipe contents for long-term applications is 140°F/ 60. Short-term applications up to 180°F/ 82°C are permissible. For buried applications, exposure to variable temperatures is generally not a design concern because of the restraining action of the surrounding soil and the inherent stress relieving characteristics of the pipe material.

Weatherability:

Weholite is produced from the PE compound containing a minimum of 2% carbon black. It has been demonstrated that this amount of well-dispersed very fine particle carbon black is sufficient protection for continuous outdoor service.

¹ Typical properties will vary within specification limits.

Corrosion and Chemical Resistance:

Weholite HDPE pipe will not rust, rot, pit, corrode, tuberculate or support biological growth. It is resistant to corrosion resulting from the presence of Hydrogen Sulfide and pH values between 2 and 13. HDPE is generally resistant to attack from many chemicals. The PPI TR-19 *Chemical Resistance of Thermoplastic Piping Materials* has been developed as an informative guide on resistance of thermoplastic materials to chemical attack.

Bending Radius:

The long-term bend radius of Weholite is 200 times the pipe OD. Only pipe joined by extrusion welded joints is suitable for bending.

Installation:

The ASTM D2321-Standard Practice for Underground Installation of Thermoplastic Pipe for Sewer and Other Gravity – Flow Applications serves as the basis for successfully installation of Weholite pipe.

Major Dimensions:

	NPS		OD ave		_	OD max		ID min		Shipping Weight		Burial Depth min ¹		Unconstrained Pipe Wall Buckling ²	
	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(lbs/ft)	(kg/m)	(ft)	(m)	kPa	psi	
	18	460	20.3	516	20.8	528	17.6	448	18	27	2.0	0.61	72	10.5	
	19.5	495	22.0	558	22.4	570	19.1	486	20	30	2.0	0.61	67	9.6	
	21	530	23.6	600	24.1	612	20.6	524	21	31	2.0	0.61	62	9.0	
	24	609.6	26.9	684	27.4	697	23.6	600	24	36	2.0	0.61	54	7.9	
	27	690	30.2	768	30.8	781	26.6	676	27	40	2.0	0.61	49	7.1	
	30	760	33.5	851	34.0	864	29.6	752	30	45	2.0	0.61	42	6.1	
	33	840	36.7	932	37.2	946	32.6	829	38	57	2.0	0.61	38	5.6	
	36	910	40.5	1028	41.0	1043	35.6	905	42	62	2.0	0.61	46	6.7	
	40	1016	44.5	1130	45.1	1145	39.6	1006	46	68	2.0	0.61	34	5.0	
	42	1070	46.5	1181	47.1	1196	41.6	1056	52	77	2.0	0.61	30	4.3	
09	48	1220	52.8	1341	53.5	1359	47.5	1207	60	89	2.0	0.61	24	3.5	
RSC160	54	1370	59.4	1509	60.2	1529	53.5	1358	70	104	2.0	0.61	25	3.6	
RS	60	1520	65.4	1662	66.3	1683	59.4	1509	90	134	2.0	0.61	18	2.7	
	66	1680	71.9	1825	72.8	1849	65.4	1660	100	149	2.0	0.61	18	2.6	
	72	1830	78.3	1989	79.3	2014	71.3	1811	120	179	2.0	0.61	17	2.5	
	78	1980	84.7	2152	85.8	2179	77.2	1961	150	223	2.0	0.61	16	2.3	
	84	2130	91.1	2315	92.3	2344	83.1	2112	160	238	2.0	0.61	16	2.3	
	90	2290	97.5	2478	98.8	2509	89.1	2263	170	253	2.0	0.61	15	2.2	
	96	2440	103.5	2630	104.8	2663	95.0	2414	190	283	2.0	0.61	12	1.8	
	102	2591	110.0	2793	111.3	2828	101.0	2565	215	320	2.0	0.61	12	1.8	
	108	2740	116.3	2955	117.8	2992	106.9	2716	240	357	2.0	0.61	12	1.7	
	120	3050	129.1	3280	130.7	3320	118.8	3018	280	417	2.0	0.61	11	1.6	
	132	3355	141.5	3594	143.2	3638	130.7	3319	330	491	2.0	0.61	10	1.4	

¹ Minimum covers presented were calculated assuming Class II backfill material compacted to 95% SPD, no hydrostatic pressure and with AASHTO HS-25 or CL-625 vehicle loading. For maximum burial depths of Weholite refer to Infra Pipe online burial calculator available at www.infrapipes.com

² Factor of Safety used in calculations is 1.5. Pipe ovality is assumed not to exceed 2%. Poisson's ratio of 0.35 has been used. 10 hr / 100° F material modulus of elasticity value of 46,900 psi has been used. Use PPI's Engineering Handbook, Chapter 6 to determine 'collapse resistance' characteristics at temperatures and load durations different from those indicated above.

Major Dimensions (continued):

	NPS		OD OI ave ma				Shipping Weight		Burial Depth min ¹		Unconstrained Pipe Wall Buckling ²			
	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(lbs/ft)	(kg/m)	(ft)	(m)	kPa	psi
	33	840	37.5	952	38.0	966	32.6	829	47	70	2.0	0.61	59	8.6
	36	910	40.8	1036	41.4	1051	35.6	905	51	76	2.0	0.61	55	8.0
	40	1016	44.8	1138	45.4	1153	39.6	1006	60	89	2.0	0.61	41	6.0
	42	1070	46.9	1192	47.6	1209	41.6	1056	70	104	2.0	0.61	40	5.7
	48	1220	53.4	1357	54.1	1375	47.5	1207	80	119	2.0	0.61	35	5.1
	54	1370	59.9	1521	60.7	1541	53.5	1358	90	134	2.0	0.61	31	4.5
	60	1520	66.3	1684	67.2	1706	59.4	1509	100	149	2.0	0.61	29	4.1
20	66	1680	72.7	1847	73.7	1871	65.3	1660	120	179	2.0	0.61	26	3.8
RSC250	72	1830	79.1	2010	80.2	2036	71.3	1811	150	223	2.0	0.61	24	3.5
2	78	1980	85.5	2173	86.6	2201	77.2	1961	160	238	2.0	0.61	22	3.3
	84	2130	92.0	2336	93.1	2366	83.2	2112	190	283	2.0	0.61	21	3.1
	90	2290	98.3	2498	99.6	2530	89.1	2263	200	298	2.0	0.61	20	2.9
	96	2440	104.7	2660	106.1	2694	95.0	2414	230	342	2.0	0.61	19	2.7
	102	2591	111.1	2822	112.5	2858	101.0	2565	250	372	2.0	0.61	18	2.6
	108	2740	117.5	2984	119.0	3022	106.9	2716	270	402	2.0	0.61	17	2.5
	120	3050	130.2	3308	131.9	3350	118.8	3018	330	491	2.0	0.61	16	2.3
	132	3355	143.0	3631	144.8	3677	130.7	3319	370	551	2.0	0.61	15	2.1
	90	2290	100.2	2545	101.6	2581	90.9	2309	220	327	2.0	0.61	36	5.2
0	96	2440	106.2	2697	107.6	2733	97.0	2463	250	372	2.0	0.61	30	4.3
RSC400	102	2590	113.0	2870	114.5	2908	103.0	2617	290	432	2.0	0.61	30	4.4
rsc.	108	2740	119.0	3023	120.5	3061	109.1	2771	330	491	2.0	0.61	26	3.7
<u>~</u>	120	3050	131.9	3350	133.6	3393	121.2	3079	410	610	2.0	0.61	25	3.7

Infra Pipe Solutions

6507 Mississauga Road Mississauga, ON L5N 1A6 CANADA

Tel: 1.866.594.7473 Fax: 905.858.0208

Web: www.infrapipes.com

¹ Minimum covers presented were calculated assuming Class II backfill material compacted to 95% SPD, no hydrostatic pressure and with AASHTO HS-25 or CL-625 vehicle loading. For maximum burial depths of Weholite refer to Infra Pipe online burial calculator available at www.infrapipes.com

² Factor of Safety used in calculations is 1.5. Pipe ovality is assumed not to exceed 2%. Poisson's ratio of 0.35 has been used. 10 hr / 100° F material modulus of elasticity value of 46,900 psi has been used. Use PPI's Engineering Handbook, Chapter 6 to determine 'collapse resistance' characteristics at temperatures and load durations different from those indicated above.